👺
Rookie's Notes
  • 😁Hi there 👋
  • 🦸‍♂️Key-value Storage
    • 😇MetaData
    • 😇CAP therom
    • 😇LSM Tree
    • 😍Google BigTable
    • 😍Google File System
    • 😍Google MapReduce
    • 🧐Bloom Filter
    • 🧐Cuckoo Filter:Better Than Bloom
    • 🤩LevelDB
      • 🤓LevelDB & BigTable
      • 🤓SSTable in LevelDB
      • 🤓Log source code analysis
    • 🤩RocksDB
      • 😙RocksDB & LevelDB
      • 😚General
      • 😚Optimization
    • 🤩TiKV
      • 🥳General
  • 🦸DPU Plus
    • 😄General
    • 😁Meson
    • 😁SSD
    • 😆NVMe
    • 🥰RDMA
      • 😍Import
      • 😅RoCE
      • 😋Elements
      • 😂Options
      • 🥳Service
      • 😃Memory Region
      • ☺️Protection Domain
      • 😁Address Handle
      • 😅Queue Pair
      • 😂Completion Queue ​
      • 😆Shared Receive Queue
      • 😆Verbs
      • 🥲用户态与内核态交互
  • 🦹‍♂️GPU & DB
    • 😀Crystal
    • 😄GPU Compression
    • 😆Mordred
    • 😃GPU & RDMA & DB
  • 🦸Databases
    • 😁CMU 15-445
      • 😉Buffer Pool
        • 😄Expand
      • 😉B+ Tree Index
        • 😌Pre: B & B+
        • 🤣Pre: B+Tree
        • 😂Expand
        • 😂Expand2: Delete
        • 😂Expand3: Index_Iterator
      • 😉Query Execution
      • 😉Concurrency Control
    • 😅CMU 15-721
      • 😇02 inmemory
      • 😇03 mvcc1
      • 😇04 mvcc2
      • 😇05 mvcc3
      • 😇06 oltpindexes1
  • 🦸‍♂️Block Chain
    • 😡Uniswap-v2 合约概览
    • 😭对接 Uniswap V2 兑换代币
    • 🤓bignumer.js中常见运算
  • 🦸‍♂️Utils
    • 😅typename or class?
    • 😁RALL
    • 🥲Smart Pointers
    • 🤣Parallelism and Concurrency
    • 😇Lock V1
    • 😇Lock V2
    • 🥰Thread Pooling
    • 😩Skiplist
    • 😅Miscellaneous Of C++
  • Group 1
    • 🫂Personal diaries
      • 😑2021中秋杂感
      • 😖2022玉玉日记(一)
      • 😚2022玉玉日记(二)
      • 🤔2022玉玉日记(三)
      • ☹️2022玉玉日记(四)
      • 🥲2022玉玉日记(五)
      • 🧐2023留学日记 (一)
Powered by GitBook
On this page
Edit on GitHub

GPU & DB

Notes of papers on DB & GPU.

Previous用户态与内核态交互NextCrystal

Last updated 2 years ago

GPU database: GPU is a promising solution for data analytics, driven by the rapid growth of GPU computation power, GPU memory capacity and bandwidth, and PCIe bandwidth. We investigate techniques that can fully unleash the power of GPU in online analytical processing (OLAP) databases.

  • Crystal [][]: A library that can run full SQL queries in GPU and saturate GPU memory bandwidth.

  • GPU-compression [][]: A highly optimized GPU compression scheme that achieves a high compression ratio and fast decompression speed.

  • Mordred [][]: A heterogeneous CPU-GPU query execution engine that optimizes data placement (i.e., semantic-aware caching) and query execution (i.e., segment-level query execution).

Advanced network technologies: The network is a bottleneck in distributed databases. Emerging network technologies including RDMA, SmartNIC, and programmable switches support different levels of computation within the network and are promising in accelerating distributed databases.

  • Active-memory []: Active-memory replication is a new high-availability scheme that leverages RDMA to directly update replica's memory and eliminate the computation overhead of log replay.

🦹‍♂️
code
SIGMOD'20
code
SIGMOD'22
code
VLDB'22
VLDB'19